首页> 外文OA文献 >A Unified Convergence Analysis of the Multiplicative Update Algorithm for Regularized Nonnegative Matrix Factorization
【2h】

A Unified Convergence Analysis of the Multiplicative Update Algorithm for Regularized Nonnegative Matrix Factorization

机译:乘法更新算法的统一收敛性分析   规则化非负矩阵分解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The multiplicative update (MU) algorithm has been extensively used toestimate the basis and coefficient matrices in nonnegative matrix factorization(NMF) problems under a wide range of divergences and regularizers. However,theoretical convergence guarantees have only been derived for a few specialdivergences without regularization. In this work, we provide a conceptuallysimple, self-contained, and unified proof for the convergence of the MUalgorithm applied on NMF with a wide range of divergences and regularizers. Ourmain result shows the sequence of iterates (i.e., pairs of basis andcoefficient matrices) produced by the MU algorithm converges to the set ofstationary points of the non-convex NMF optimization problem. Our proofstrategy has the potential to open up new avenues for analyzing similarproblems in machine learning and signal processing.
机译:乘法更新(MU)算法已被广泛用于估计在大范围散度和正则化条件下的非负矩阵分解(NMF)问题中的基矩阵和系数矩阵。但是,理论收敛性保证只是针对一些特殊的差异而没有进行正则化。在这项工作中,我们为应用于NMF的MU算法在各种差异和正则化条件下的收敛提供了概念上简单,自包含且统一的证明。我们的主要结果表明,由MU算法产生的迭代序列(即成对的基数和系数矩阵)收敛到非凸NMF优化问题的平稳点集。我们的战略策略有可能为分析机器学习和信号处理中的类似问题开辟新的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号